Structural Basis of Substrate Selectivity of E. coli Prolidase

نویسندگان

  • Jeremy Weaver
  • Tylan Watts
  • Pingwei Li
  • Hays S. Rye
چکیده

Prolidases, metalloproteases that catalyze the cleavage of Xaa-Pro dipeptides, are conserved enzymes found in prokaryotes and eukaryotes. In humans, prolidase is crucial for the recycling of collagen. To further characterize the essential elements of this enzyme, we utilized the Escherichia coli prolidase, PepQ, which shares striking similarity with eukaryotic prolidases. Through structural and bioinformatic insights, we have extended previous characterizations of the prolidase active site, uncovering a key component for substrate specificity. Here we report the structure of E. coli PepQ, solved at 2.0 Å resolution. The structure shows an antiparallel, dimeric protein, with each subunit containing N-terminal and C-terminal domains. The C-terminal domain is formed by the pita-bread fold typical for this family of metalloproteases, with two Mg(II) ions coordinated by five amino-acid ligands. Comparison of the E. coli PepQ structure and sequence with homologous structures and sequences from a diversity of organisms reveals distinctions between prolidases from Gram-positive eubacteria and archaea, and those from Gram-negative eubacteria, including the presence of loop regions in the E. coli protein that are conserved in eukaryotes. One such loop contains a completely conserved arginine near the catalytic site. This conserved arginine is predicted by docking simulations to interact with the C-terminus of the substrate dipeptide. Kinetic analysis using both a charge-neutralized substrate and a charge-reversed variant of PepQ support this conclusion, and allow for the designation of a new role for this key region of the enzyme active site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using directed evolution to improve the solubility of the Cterminal domain of Escherichia coli aminopeptidaseP

The Escherichia coli aminopeptidase P (AMPP) is a protease with subunits that consist of two domains. Solution studies have shown that the activity of AMPP is manganese-dependent [1], and structural studies have shown that its active site contains two metals that are coordinated by residues from the C-terminal domain [2]. AMPP has a structure that is similar to that of prolidase and creatinase,...

متن کامل

Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus.

Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion bindin...

متن کامل

Structural basis for substrate specificity in the Escherichia coli maltose transport system.

ATP-binding cassette (ABC) transporters are molecular pumps that harness the chemical energy of ATP hydrolysis to translocate solutes across the membrane. The substrates transported by different ABC transporters are diverse, ranging from small ions to large proteins. Although crystal structures of several ABC transporters are available, a structural basis for substrate recognition is still lack...

متن کامل

Lactobacilli carry cryptic genes encoding peptidase-related proteins: characterization of a prolidase gene (pepQ) and a related cryptic gene (orfZ) from Lactobacillus delbrueckii subsp. bulgaricus.

Two genes, pepQ and orfZ, encoding a prolidase and a prolidase-like protein, respectively, were cloned and characterized from Lactobacillus delbrueckii subsp. bulgaricus. The identity of the pepQ and orfZ genes with the Lactobacillus delbrueckii subsp. lactis prolidase gene (pepQ) was shown to be 98% and 60%, respectively. Both pepQ and orfZ were preceded by a putative promoter region. Northern...

متن کامل

Biochemical Basis of Prolidase Deficiency

Cultured skin fibroblasts or lymphoblastoid cells from eight patients with clinical symptoms of prolidase deficiency were analyzed in terms of enzyme activity, presence of material crossreacting with specific antibodies, biosynthesis of the polypeptide, and mRNA corresponding to the enzyme. There are at least two enzymes that hydrolyze imidodipeptides in these cells and these two enzymes could ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014